3. Appendix Inverses of Arithmetic functions
A result stated and not proved in the lectures was

Theorem 3.40 An arithmetic function f has an inverse under x if, and

only if, f (1) #0.

Proof (=) Assume f has an inverse, g say, so g x f = 0. In particular
g* f(1)=6(1) =1, ie.
g9(1) f(1) = 1. (15)

Hence f(1) # 0.
(<) Assume that f(1) # 0. Define g inductively.
So start with g (1) f(1) =1, 1i.e. g(1) = 1/f(1).
has been defined for all 1 < n < k. Define g (k+1) to

~—

Assume that g (n
ensure that

D, 9@ f®)=0, ie gh+1)f(1)=— > gla)f(b).  (16)
ab=k+1 (Zb;]fjrkll

This definition makes sense. In the sum on the right hand side we have
ab = k+1 and a # k-+1, in which case a < k and we have assumed ¢ has
already been defined on these a and the values can be fed in to give the
definition of ¢ (k+1).

In this way the infinite sequence of equalities

gxf(1) = d(1)=1
g*f(2) = 6(2)=0,
g*f(3) = d(3)=0

are satisfied. Thus

ab=n

for all n > 1 which means g * f = ¢. ]
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We can go further and ask, if f is multiplicative and f(1) # 0 is f~*
multiplicative?

Theorem 3.41 If f is multiplicative and has an inverse f~! then the inverse
1s multiplicative.

Proof Assume that f is multiplicative. Then f(1) = 1 # 0 and so by the
previous theorem f has an inverse, defined iteratively by f~1(1) =1 and

) f(%) | (17)

d|N
d#N

for all N > 2.

We require to show that f~'(myms) = f~'(my) f~'(mg) for all coprime
pairs (my, ms). The proof is by induction on mims.

The base case is the coprime pair (mq,my) with mymy = 1. This is
just my; = my = 1. From its definition we have f~'(1) = 1 in which case
Y1) =1= (1) f7*(1) and so the result holds in this case.

Assume that f~1(mims) = f~1(my) f~1(my) for all coprime pairs with
mimeo < k, for some k > 2.

Let (n1,n2) be a coprime pair with nyny = k+1. Apply (17) with N =

ning to get
nin
f ) == Y ) (R

dlning
d#ning

Because ged (n1,n2) = 1, there is a one-to-one map between the divisors d of
niny and the pairs of divisors (dy, ds) with di|n; and dy|ny. Thus

f1n1n2 Z f dldQ (Z—iz—z)

di|n1 da|ns
dide#nina

In this sum dydy # nins and so dyds < ninsg, i.e. dids < k. By the inductive
hypothesis f~1(dids) = f~1(dy) f~1(dy). Hence

Flmy = — 3 fl(d1)f1(d2)f(%>f(%)

di|ny da|ns
dida#ning
T S SR
di|ni da|ns di|ni da|ns di|ni da|ns
d1#n1,da#ns di1=n1,d2#n2 di1#n1,da=no
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The first term here equals

- () |- X ()
s i

= —f" () [ (na)

by (17) applied twice with N = n; and N = ny. The second term in (18)
equals

> (5 ()

di|n1 da|na
di=n1,d27#n2

by (17) applied with N = ny. And the same result holds for the third term
in (18). Thus

f N ng) = —f ) T n2) 4 f () f N (o) + f () £ (ne)
= [ () [ (na)

So the result holds for all coprime pairs with product k£ + 1. Hence, by
induction, the result holds for all coprime pairs, i.e. f~! is multiplicative. B
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